如果一个整数 n 在 b 进制下(b 为 2 到 n - 2 之间的所有整数)对应的字符串 全部 都是 回文的 ,那么我们称这个数 n 是 严格回文 的。 给你一个整数 n ,如果 n 是 严格回文 的,请返回 true ,否则返回 false 。 如果一个字符串从前往后读和从后往前读完全相同,那么这个字符串是 回文的 。
给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。 • 例如,121 是回文,而 123 不是。
给你一个 下标从 0 开始 的正整数数组 w ,其中 w[i] 代表第 i 个下标的权重。 请你实现一个函数 pickIndex ,它可以 随机地 从范围 [0, w.length - 1] 内(含 0 和 w.length - 1)选出并返回一个下标。选取下标 i 的 概率 为 w[i] / sum(w) 。 • 例如,对于 w = [1, 3],挑选下标 0 的概率为 1 / (1 + 3) = 0.25 (即,25%),而选取下标 1 的概率为 3 / (1 + 3) = 0.75(即,75%)。
给定方法 rand7 可生成 [1,7] 范围内的均匀随机整数,试写一个方法 rand10 生成 [1,10] 范围内的均匀随机整数。 你只能调用 rand7() 且不能调用其他方法。请不要使用系统的 Math.random() 方法。 每个测试用例将有一个内部参数 n,即你实现的函数 rand10() 在测试时将被调用的次数。请注意,这不是传递给 rand10() 的参数。
给你一个整数数组 nums ,设计算法来打乱一个没有重复元素的数组。打乱后,数组的所有排列应该是 等可能 的。 实现 Solution class: • Solution(int[] nums) 使用整数数组 nums 初始化对象 • int[] reset() 重设数组到它的初始状态并返回 • int[] shuffle() 返回数组随机打乱后的结果
给你一个单链表,随机选择链表的一个节点,并返回相应的节点值。每个节点 被选中的概率一样 。 实现 Solution 类: • Solution(ListNode head) 使用整数数组初始化对象。 • int getRandom() 从链表中随机选择一个节点并返回该节点的值。链表中所有节点被选中的概率相等。
给你一个可能含有 重复元素 的整数数组 nums ,请你随机输出给定的目标数字 target 的索引。你可以假设给定的数字一定存在于数组中。 实现 Solution 类: • Solution(int[] nums) 用数组 nums 初始化对象。 • int pick(int target) 从 nums 中选出一个满足 nums[i] == target 的随机索引 i 。如果存在多个有效的索引,则每个索引的返回概率应当相等。
矩形以列表 [x1, y1, x2, y2] 的形式表示,其中 (x1, y1) 为左下角的坐标,(x2, y2) 是右上角的坐标。矩形的上下边平行于 x 轴,左右边平行于 y 轴。 如果相交的面积为 正 ,则称两矩形重叠。需要明确的是,只在角或边接触的两个矩形不构成重叠。 给出两个矩形 rec1 和 rec2 。如果它们重叠,返回 true;否则,返回 false 。
给你一个以 (radius, xCenter, yCenter) 表示的圆和一个与坐标轴平行的矩形 (x1, y1, x2, y2) ,其中 (x1, y1) 是矩形左下角的坐标,而 (x2, y2) 是右上角的坐标。 如果圆和矩形有重叠的部分,请你返回 true ,否则返回 false 。 换句话说,请你检测是否 存在 点 (xi, yi) ,它既在圆上也在矩形上(两者都包括点落在边界上的情况)。
给你一个二维整数数组 stockPrices ,其中 stockPrices[i] = [dayi, pricei] 表示股票在 dayi 的价格为 pricei 。折线图 是一个二维平面上的若干个点组成的图,横坐标表示日期,纵坐标表示价格,折线图由相邻的点连接而成。比方说下图是一个例子: 请你返回要表示一个折线图所需要的 最少线段数 。
给定一个数组 coordinates ,其中 coordinates[i] = [x, y] , [x, y] 表示横坐标为 x、纵坐标为 y 的点。请你来判断,这些点是否在该坐标系中属于同一条直线上。
Alice 和 Bob 两个人轮流玩一个游戏,Alice 先手。 一开始,有 n 个石子堆在一起。每个人轮流操作,正在操作的玩家可以从石子堆里拿走 任意 非零 平方数 个石子。 如果石子堆里没有石子了,则无法操作的玩家输掉游戏。 给你正整数 n ,且已知两个人都采取最优策略。如果 Alice 会赢得比赛,那么返回 True ,否则返回 False 。